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Abstract

A family of acoustic perturbation equations is derived for the simulation of flow-induced acoustic fields in time and

space. The mean flow convection and refraction effects are part of the simulation of wave propagation. Using linearized

acoustic perturbation equations the unbounded growth of hydrodynamic instabilities in critical mean flows is prevented

completely. The perturbation equations are excited by source terms determined from a simulation of the compressible

or the incompressible flow problem. Since the simulation of wave propagation contains the convection effects the

computational domain of the flow simulation has to comprise only the significant acoustic source region. The acoustic

perturbation equations are validated by computing a monopole source in a sheared mean flow, the sound generated due

to a spinning vortex pair, and the sound generated by a cylinder in a crossflow.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Acoustic perturbation equations; LES; CAA; Flow decomposition; Source filtering

1. Introduction

To simulate flow-induced noise a hybrid two step approach is considered. The first step consists of a
simulation of the unsteady compressible flow problem just in the area where noise is generated. Since the

fluid dynamical and acoustical length scales differ considerably for small Mach numbers, the acoustic field

is computed in a second step using acoustic perturbation equations that describe the propagation of

acoustic waves in time and space. Its computational domain has a substantially larger extension compared

to that of the flow simulation due to the increased grid spacing allowed for the acoustic simulation. The

constraints concerning the grid resolution of the unsteady flow simulation are given by the size of a typical

turbulent integral length scale. The Strouhal number St ¼ xL=u can be interpreted to be proportional to the

reciprocal value of the non-dimensional length scale of convective vortical disturbances kv, i.e.,
St / ðkv=LÞ�1

. The inverse of the non-dimensional acoustic wavelength k is defined by the Helmholtz
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number He ¼ xL=c ¼ StM / ðk=LÞ�1
, where M ¼ u=c is the Mach number of the problem. Hence, vortical

structures generate acoustic waves with a M�1 larger length scale.

Numerous noise problems in aeronautics are related to flows at Mach numbers of the order of M � 10�1,

e.g., airframe-noise of aircraft during take-off and landing. For such problems an acoustic domain with an

extension at least one order of magnitude larger than the core domain of the flow simulation can be used

with a comparable number of mesh points in the acoustic and the flow domain, respectively.

For example, consider the noise generated by the turbulent flow in the vicinity of a sharp trailing edge of

an airfoil section, Fig. 1. In this problem, the unsteady turbulent compressible flow close to the trailing edge
is computed in the first step using computational fluid dynamics (CFD) methods capable to resolve the

essential unsteady scales, e.g., large eddy simulation (LES) or direct numerical simulation (DNS).

The second step consists of the simulation of the acoustic field by solving acoustic perturbation equa-

tions in a computational domain, which comprises apart from the CFD region the remaining geometry not

resolved in the unsteady flow simulation. For the discretization of the acoustic perturbation equations

numerical methods developed in the framework of computational aeroacoustics (CAA) are applied. The

diffraction of acoustic waves at the leading edge and the geometry of the complete surface are taken into

account as part of the acoustic simulation. Furthermore, the acoustic perturbation equations are the ap-
propriate governing equations to describe wave propagation in the inhomogeneous acoustic domain where

the mean flow field deviates considerably from the free-flow values. In this case, the homogeneous con-

vected wave equation with constant coefficients does not describe wave propagation physically exact.

Besides the perturbation equations based on a compressible flow simulation proposed in this study

several other approaches are given in the literature to determine the acoustic field in the second step of

hybrid prediction methods [23], e.g.,

• acoustic analogies,

• perturbation equations based on an incompressible flow simulation.

Fig. 1. Sketch of the computational domains to determine trailing edge noise with the hybrid approach. The LES domain encompasses

the vicinity of the trailing edge whereas the computational aeroacoustics (CAA) domain includes the whole airfoil due to the less

stringent demands concerning the grid resolution (Dxacoustic � DxLES=M , M ¼ Oð10�1Þ). Thus, scattering at the leading edge can be

captured and directivities can be predicted.

366 R. Ewert, W. Schr€ooder / Journal of Computational Physics 188 (2003) 365–398



The first and most famous acoustic analogy is that of Lighthill [24]. Lighthill rearranged the continuity

and the Navier–Stokes equations such that the left-hand side represents an acoustic wave equation de-

scribing wave propagation in a quiescent or, via Galilean transformation, in a uniformly moving medium,

which is excited by a right-hand side source. This source describes besides acoustic sources also convection

and refraction effects in the inhomogeneous acoustic domain. Considering the trailing edge problem, Fig. 1,

the source of Lighthill�s equation has to be determined not only in the area close to the trailing edge, but

also in the remaining inhomogeneous acoustic domain to take into account non-uniform convection effects,

that can be large even for small Mach number flows [4]. Grogger et al. [15] showed that the convection
effects due to the irrotational flow field around a 12% Zhukhovski airfoil are not sufficiently described by

assuming a simple constant convection speed.

As an extension of the Lighthill equation the Ffowcs Williams–Hawkings (FW–H) equation allows to

consider solid surfaces by using information of the unsteady surface pressure. For the problem in Fig. 1 the

pressure distribution on the front part of the airfoil is unknown and the application of the FW–H equation

in the frequency domain yields rather a system of equations for these unknowns than an explicit prediction

method. Neglecting these pressure fluctuations might lead to errors of several dBs [26]. The wave operator
of Lilley�s acoustic analogy [25] describes exactly convection effects for shear flows [12]. However, as
pointed out in [34], Lilley�s equation includes the prediction of hydrodynamic instabilities and thus, so-

lutions can become unstable at critical mean flow profiles.

Hybrid methods based on a decomposition of the flow field into incompressible hydrodynamics and

compressible perturbation equations, e.g., the non-linear methods proposed by Hardin and coworkers

[16,17,32], Shen and Sørensen [35,36], and Slimon et al. [37], in principle exclude the backscatter of acoustic

perturbations onto the incompressible flow field that could be important for some acoustic source mech-

anisms. On the other hand, hybrid methods, which allow the use of sources based on a compressible and

unsteady flow simulation for linearized perturbation equations, e.g., the linearized Euler equations (LEE)
with non-linear source terms, might suffer from excited hydrodynamic instabilities. Since the linearized

Euler equations describe the propagation of acoustic, vorticity, and entropy waves unstable solutions of the

LEE in a globally unstable mean flow occur. This is evidenced in Section 4.4 for the mean flow field of a

cylinder in a crossflow (Fig. 11).

The purpose of this work is the formulation of acoustic perturbation equations driven by sources de-

termined from a compressible flow simulation. The various systems of acoustic equations will be shown to

be hydrodynamically stable. For low Mach number problems the grid resolution can be strongly reduced

since the convection modes with their smaller length scales are suppressed.
Since convection effects are described by the wave operator encoded in the acoustic perturbation

equations, they are unlike the source of Lighthill�s acoustic analogy excluded from the right-hand side

sources. That is, the extension of the source domain, which has to be resolved in the flow simulation in the

first step, can be significantly reduced, thus it is computationally less expensive. The acoustic domain is

large enough to compute directivities in the near far field. If necessary, however, the results from the

acoustic simulation can be used as input for Kirchhoff methods applied on the interface between the in-

homogeneous and the homogeneous acoustic domain, where the mean flow is sufficiently uniform such that

the homogeneous constant-coefficient wave equations describe wave propagation physically correct.
The paper is organized as follows. In Section 2, the source-term filtering is proposed which extracts from

an initially time-dependent source of the linearized Euler equations only those contributions related to an

acoustic source. In Section 3, the filtering technique is used to derive acoustic perturbation equations

(APE), which take into account the convection and refraction effects due to a non-uniform base flow field.

The wave propagation in a sheared mean flow, the spinning vortex pair, and the sound generated by a

circular cylinder in laminar subsonic flow are used as test problems in Section 4 to juxtapose the

solutions of the APE and other perturbation equations. Finally, the essential findings are summarized in

Section 5.
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2. Source filtering

A significant noise source arises from the interaction of unsteady flow fields with geometric inhomo-

geneities, e.g., noise originating from leading and trailing edges of a wing or fan or compressor blades.

These noise sources can be understood as the transformation of the energy of vorticity waves into

acoustical energy. As shown by Chu and Kov�aasznay [2] a compressible flow can be represented as a sum of

vortical, entropy, and acoustic components. The linearized Euler equations have three eigenmodes repre-

senting these components. Therefore, these equations can be used to simulate the above-mentioned sound
source mechanism, e.g., by injecting vorticity into the flow field upstream of a sound generating obstacle

[5,6].

If the sound field is computed using a simulation of the unsteady compressible flow problem in the

area where the noise is generated one has to be aware that the interaction of vorticity with the geometry

and the generation of acoustic responses are part of the flow simulation. In general, it is possible to split

the simulation of acoustic wave propagation and the computation of the acoustic sources, which arise

from the unsteady flow. Such a separation of the analysis of the flow field and the acoustic field offers

the possibility to take advantage of the disparity of the turbulent and acoustic scales at low Mach
numbers.

We turn now to the derivation of a source term that excites purely acoustic modes. The governing fluid

dynamics equations, i.e., mass, momentum, and energy equation, are rewritten such that the left-hand side

corresponds to the linearized inviscid (Euler) equations plus the linearized energy and continuity equations,

while the right-hand side is the source term given by the non-linear and viscous terms. In general, this

source term will generate responses of the linearized equations to all eigenmodes.

In the following part a method is presented, which filters an initial source vector of the linearized Euler

equations such that the remaining source excites solely acoustic modes in the linearized Euler equations. We
start with the two-dimensional linearized Euler equations for a uniform mean flow with an additional

source term. The extension to non-uniform flows based on the findings in this section will be presented in

Section 3.1. In Section 3.4 it will be shown that source filtering is an appropriate method to derive equa-

tions, which are stable for arbitrary mean flows and density gradients.

For a uniform mean flow in the x-direction the linearized Euler equations can be written as

oU

ot
þ oE

ox
þ oF

oy
¼ S; ð1Þ

where U ¼ ðq; u; v; pÞT is the vector of the primitive perturbation variables, i.e., the density q, the Cartesian
velocity components u; v and the pressure p. E and F are the flux vectors,

U ¼

q
u
v
p

0BB@
1CCA; E ¼

q1u þ qu1
u1u þ p=q1

u1v
u1p þ cp1u

0BB@
1CCA; F ¼

q1v
0

p=q1
cp1v

0BB@
1CCA; ð2Þ

and S can be any arbitrary source. Constant mean flow quantities are denoted by the subscript 1 and c
represents the ratio of specific heats. As shown in Appendix A, Eq. (1) can be rewritten by combined

Fourier and Laplace transformation in the following form:

A eUU ¼ eGG : ð3Þ

The transformation changes the time and space dependence into a frequency and wave number dependence,

i.e., f ðt; x; yÞ is transferred into eff ðx; a; bÞ, where the quantities a and b denote the wave numbers in the x-
and y-direction, respectively. The matrix A is given for the two-dimensional case by Eq. (A.8). Due to the
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fact that a Laplace transformation is applied to the time coordinate, initial conditions at time level t ¼ 0 can

be immediately identified. As shown in Appendix A the source of Eq. (3) iseGG ¼ iðeSS þ eUU initial=2pÞ: ð4Þ

The eigenvalues kj (A.10) and the eigenvectors xj, j ¼ 1; . . . ; 4, (A.11) and (A.12) of the matrix A are related

to the eigenmodes of the linearized Euler equations (1). According to the enumeration in Appendix A, the

first and second eigenvector are related to entropy and vorticity waves, respectively. The third and fourth

eigenvector describe acoustic eigenmodes. The transform of the vector of the primitive variables eUU can be

expressed as a linear combination of all eigenmodes

eUU ¼ C1

k1

x1 þ
C2

k2

x2 þ
C3

k3

x3 þ
C4

k4

x4 ¼ XK�1 
 C : ð5Þ

The columns of the matrix X are given by the eigenvectors xj. Furthermore, the matrix of the eigenvalues
and its inverse are introduced via

K ¼ diagðk1; . . . ; k4Þ; K�1 ¼ diagðk�1
1 ; . . . ; k�1

4 Þ:

The vector C has the components Cj. By substituting Eq. (5) for eUU in Eq. (3) and by applying the similarity

transformation A ¼ XKX�1 Eq. (3) can be rewritten

XC ¼ eGG ð6Þ

to yield after multiplying with the inverse of the matrix of the eigenvectors X�1 (A.15)

C ¼ X�1 eGG : ð7Þ

The components of the vector C describe the response of the various eigenmodes due to the source term eGG .

From Eq. (7) a modified vector can be derived by dropping all but one component of C , say, component i
of eigenmode i. Introducing this modified vector into Eq. (6) yields a condition for a modified source term,

which excites only the ith eigenmode of the governing equations. The computation yields for the source

vector of mode i

eGG i ¼ xi x
�1
i

� 	T eGG ; ð8Þ

where ðx�1
i ÞT denotes the ith row of the inverse matrix X�1. The dyadic product of the xi vectors in (8) yields

a filtering matrix. To be more precise, from the two acoustic eigenmodes x3 and x4 a combined acoustic

filtering matrix follows:

Ta ¼ x3 x�1
3

� 	T þ x4 x�1
4

� 	T
; ð9Þ

Ta ¼

0 0 0 c�2
1

0 a2 a2 þ b2
� 	�1

ab a2 þ b2
� 	�1

0

0 ab a2 þ b2
� 	�1

b2 a2 þ b2
� 	�1

0

0 0 0 1

0BBB@
1CCCA ð10Þ

that determines an acoustic source vectoreGG a ¼ Ta 
 eGG : ð11Þ

The inverse transformation of the acoustic source vector into space and time follows by using the formalism

given in (A.3). For example, neglecting the initial quantities in Eq. (4), i.e., the full source vector reads
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eGG ¼ ieSS , and using the matrix Ta (10) for the second row of Eq. (11) the following equation in wave

number/frequency space is obtained

�ða2 þ b2ÞeSS a
2 ¼ �a2eSS2 � abeSS3:

Applying (A.3) the solution in time and space reads

o2

ox2



þ o2

oy2

�
Sa
2 ¼

o2

ox2
S2 þ

o2

oxoy
S3:

After the analysis for all components of Eq. (11) a system of differential equations is obtained, which relates

the components of the filtered source vector Sa to those of the full source vector S

Sa
1 ¼ c�2

1 S4; ð12Þ

r2Sa
2 ¼

o2

ox2
S2 þ

o2

oxoy
S3; ð13Þ

r2Sa
3 ¼

o2

oxoy
S2 þ

o2

oy2
S3; ð14Þ

Sa
4 ¼ S4: ð15Þ

The vanishing initial conditions are no severe constraint, since this can be always accomplished by using
a source weighting function to initialize the source during a transient process. Except for the factor c�2

1
the first and fourth filtered source component are equal and in conjunction with the linearized Euler

equations (1) only isentropic pressure and density fluctuations are excited. The second and third com-

ponent of the filtered source vector are determined via Poisson equations. The evaluation of these

components can be simplified further by defining a source function U, which is related to the filtered

components via

Sa
2 ¼

oU
ox

; Sa
3 ¼

oU
oy

; ð16Þ

such that only one Poisson equation has to be solved using the condition

r2U ¼ oS2
ox

þ oS3

oy
: ð17Þ

Let us summarize the result of this section. An acoustic source vector is determined for the two-dimensional

problem with uniform mean flow in the x-direction. This acoustic source follows from a full source vector

S ¼ ðS1; S2; S3; S4ÞT via

Sa ¼
c�2
1 S4

oU=ox
oU=oy

S4

0BB@
1CCA ¼

c�2
1 S4
rU
S4

0@ 1A; ð18Þ

where Uðx; y; tÞ is the solution of Eq. (17). Note that similar to the acoustic filtering matrix (9) additional

filtering matrices for the entropy and vorticity modes can be derived. The sum of all matrices yields the

unity matrix.
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In the three-dimensional problems the acoustic source vector components of the full source vector

S ¼ ðS1; . . . ; S5ÞT can also be determined from the gradient of a source function Uðx; y; z; tÞ and a source

function of the energy equation S5, i.e.,

Sa ¼
c�2
1 S5
rU
S5

0@ 1A; ð19Þ

where the condition for U reads r2U ¼ oS2=ox þ oS3=oy þ oS4=oz.

3. Acoustic perturbation equations

Various forms of acoustic perturbation equations (APEs) are introduced. First the basic system is de-

rived, which does not contain any vortical modes. Then, the basic system is slightly modified to gain a

convenient structure for an incompressible initial flow simulation. Following a stability analysis of the

acoustic system the form of the wave operator of the acoustic perturbation equations is used to rewrite the
governing equations such that a hydrodynamically stable system with a simple source term for a com-

pressible flow simulation results that is based on the Lamb vector x � u.

3.1. Derivation of the fundamental system

The source-term filtering is derived for uniform mean flows. A simple extension to non-uniform mean

flows is difficult to achieve since in this case products of mean flow and perturbation quantities in Fourier/

Laplace space cannot be separated. Acoustic perturbation equations, however, which also take into ac-

count the convection and refraction effects of a non-uniform flow field, can be derived similar to the ex-

tension of Lighthill�s equation to higher acoustic analogies. Considering exterior flow problems in the

inhomogeneous acoustic domain the Lighthill source on the right-hand side describes besides acoustic

sources also refraction and convection effects. Convection effects are encoded in the products of mean flow

and acoustic perturbation velocities. By shifting those terms to the left-hand wave operator side higher
acoustic analogies can be derived. As discussed by Ribner [34] using this procedure an extension of

Lighthill�s equation in terms of pressure p0 can be formulated as a precursor of Lilley�s acoustic analogy

[25]. To obtain a scalar wave equation for the acoustic variable p0 in an additional step the perturbation

velocities have to be substituted using the momentum equation.

This concept can also be pursued in the case of the linearized Euler equations for a vanishing mean flow

u1 ¼ 0 with filtered acoustic source vector to achieve a formulation for the non-uniform flow problem. To

make convection and refraction effects part of the acoustic field solution the related source terms have to be

shifted to the left-hand side. Since in this case no scalar wave equation is solved for one single acoustic
variable but rather a system of equations for a complete set of acoustic variables, the second step of

substituting the acoustic variable is unnecessary. As shown in Section 2, the acoustic source of the mo-

mentum equation is given by the gradient of the source function U, which is found by solving the Poisson

equation (17). Due to the linearity of the Poisson equation, it can be split into several contributions. To be

more precise, a splitting can be introduced such that one part is related to the convection effects. It will be

shown below that it is possible to evaluate the convection terms explicitly, if the momentum equation is

written in primitive variables. Furthermore, to be able to apply the source-term filtering, the governing

equations in primitive variables have to be transformed initially into a system of linear differential equa-
tions on the left-hand side with constant coefficients that describe wave propagation in a quiescent or

uniformly moving medium. The remaining terms are lumped together as sources on the right-hand side.
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A system of differential equations satisfying the previously prescribed constraints can be formulated by

using the enthalpy h as variable in the governing equations from which the pressure can be deduced. Then,

the continuity and Navier–Stokes equations can be written for a two- or three-dimensional problem with

the enthalpy h and the velocities u as variables

oh
ot

þ c21ðr 
 uÞ ¼ q; ð20Þ

ou

ot
þrh ¼ f ; ð21Þ

with

q ¼ �u 
 rh � c2
�

� c21
	
ðr 
 uÞ þ c2

R
Ds
Dt

; ð22Þ

f ¼ �ðu 
 rÞuþr 
 s
q

þ Trs: ð23Þ

Here, s and c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
represent the entropy and speed of sound, respectively. The stress tensor is denoted

by s. The density q is substituted using the second law of thermodynamics

dq
q

¼ 1

c
dp
p
� ds

cp
; ð24Þ

which is rewritten for thermally and calorically ideal gas that obeys

p ¼ c � 1

c
cpqT : ð25Þ

The pressure in the momentum equation is expressed by the enthalpy using the usual form of the second

law

rp
q

¼ rh � Trs: ð26Þ

The continuity equation is extended with the identity c21ðr 
 uÞ ¼ c21ðr 
 uÞ. The left-hand side of the

system (20) and (21) can be transformed into a wave equation for the enthalpy h with propagation speed c1

o2

ot2

�
� c21r2

�
h ¼ oq

ot
� c21r 
 f :

The left-hand sides of the equation system (20) and (21) have an acoustic and a vorticity eigenmode such

that also vorticity waves are excited by the right-hand side. However, due to the chosen set of variables

entropy modes are a priori excluded from the system of differential equations. For n-dimensional problems

the left-hand side of (20) and (21) is a system of n þ 1 equations for n þ 1 variables ðh; uÞT, hence it is

complete. The right-hand side source also includes entropy fluctuations. Therefore, the source has to be
determined from a CFD solution, which also provides the information on entropy fluctuations.

The vorticity eigenmode of the system (20) and (21) describes vortical disturbances occurring in a

quiescent medium. Note that the derivation discussed below could also be carried out for a system of

equations containing a constant convection speed on the left-hand side, in other words for a system de-

scribing wave propagation in a fluid moving at u1 ¼ const. Then, the homogeneous system describes
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properly the wave propagation in the homogeneous acoustic domain for exterior problems with that free

flow velocity. Since the particular value of u1 ¼ const does not affect the final result, for simplicity, the

following derivation is discussed for a medium with u1 ¼ 0.

The constant coefficient c1 in Eqs. (20) and (21) allows to apply the source-term filtering to obtain an

acoustic source from the combined acoustic and vorticity source S ¼ ðq; f Þ on the right-hand side. A fil-

tered source vector, which will excite either acoustical (superscript a) or vortical (superscript v) modes,

follows in the wave number/frequency space from the matrix operation

eGG a;v ¼ Ta;v 
 eGG ; ð27Þ

where the tilde denotes transformed quantities. The filtering matrices for the acoustic and the non-acoustic

modes in wave number and frequency space is computed according to the procedure described in Section 2.

Fourier/Laplace transformation according to Appendix A yields the governing equation system in the form
of Eq. (3) with the transformed source vector equation (4). When only two-dimensional problems are

considered the matrix A and the vector of the transformed variables eUU read for the particular Eqs. (20) and

(21)

A ¼
�xx �c21a �c21b
�a �xx 0

�b 0 �xx

0@ 1A; eUU ¼
ehheuuevv

0@ 1A: ð28Þ

The eigenvalues are k1 ¼ �xx, k2;3 ¼ �xx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
, and the related eigenvectors xi determine the columns of

the matrix X

X ¼ x1; x2; x3ð Þ ¼

0 1 1

b a=ðc1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
Þ �a=ðc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
Þ

�a b=ðc1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
Þ �b=ðc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
Þ

0BB@
1CCA:

The first eigenvector x1 defines the vorticity mode, while the other eigenvectors x2, x3 describe acoustic

modes. The inverse of X , i.e., X�1, whose rows are denoted by ðx�1
i ÞT reads

X�1 ¼
x�1
1

� 	T
x�1
2

� 	T
x�1
3

� 	T
0B@

1CA ¼

0 b=ða2 þ b2Þ �a=ða2 þ b2

1=2 ac1= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
 �
bc1= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
 �
1=2 �ac1= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
 �
�bc1= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
 �
0BBBB@

1CCCCA:

The filtering matrices for pure acoustic and vorticity excitation are determined by evaluating

Ta ¼ x2ðx�1
2 ÞT þ x3ðx�1

3 ÞT and Tv ¼ x1ðx�1
1 ÞT, respectively

Ta ¼
1 0 0

0 a2

a2þb2
ab

a2þb2

0 ab
a2þb2

b2

a2þb2

0B@
1CA; Tv ¼

0 0 0

0 b2

a2þb2
� ab

a2þb2

0 � ab
a2þb2

a2

a2þb2

0B@
1CA: ð29Þ

The acoustic source vector in time and space follows from the inverse transformation of Eq. (27) using the
acoustic filtering matrix Ta of (29). This procedure agrees with that in Section 2 where Eq. (11) was the

starting point of the derivation of the acoustic source equation (18). The components of the filtered acoustic

source term in time and space Sa ¼ ðqa; f aÞT follows to be related to the initial source vector S¼ðq; f ÞT with

the components given in Eqs. (22) and (23) via
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Sa ¼ qa

f a


 �
¼ q

rU


 �
with r2U ¼ r 
 f : ð30Þ

The vector Sa excites Eqs. (20) and (21) and generates only responses of the acoustic eigenmodes. That is,

on the left-hand side the enthalpy h and the unsteady acoustic velocities ui are excited

oh
ot

þ c21 r 
 uið Þ ¼ qa; ð31Þ

oui

ot
þrh ¼ f a: ð32Þ

Note that the discussion below will show the enthalpy h not to be split by the source filtering. Taking the

curl of Eq. (32) with f a ¼ rU yields

o

ot
rð � uiÞ ¼ 0 ð33Þ

such that the decomposed velocity ui remains irrotational if it is initially irrotational. Since the derivation of

the source filtering assumes vanishing initial conditions, see Section 2, this constraint is satisfied. Fur-

thermore, it follows from the filtered vorticity source Sv, that it induces on the left-hand side of Eq. (21) a

solenoidal velocity field us. Since the sum of the filtering matrices (29) yields the unity matrix, the sum of
Eq. (32) with acoustic source plus the related equation for the vortical mode must yield Eq. (21) with source

equation (23). That is, in restating the Helmholtz decomposition theorem using the source filtering the

velocity is split uniquely into an irrotational and a solenoidal part, i.e.,

u ¼ ui þ us: ð34Þ

Due to the source filtering, the irrotational velocity ui, which could also contain non-zero time averaged

velocity components, is completely related to the acoustic mode.

In the following a system of acoustic equations for perturbation quantities for a non-vanishing

mean flow is derived. The perturbations are defined to be deviations from time-averaged mean
quantities

u ¼ �uuþ u0 ¼ �uuþ uv þ ua: ð35Þ

Here �uu denotes the time-averaged mean flow, uv is a solenoidal vortical perturbation, and ua is an irro-

tational acoustic perturbation. First, Eq. (32) is considered. The irrotational velocity ui occurs only as a

time derivative on the left-hand side, thus the irrotational perturbation velocity ua can be substituted for

ui. To transfer terms, which describe convection effects, to the left-hand side of Eq. (32) the decomposition

of Eq. (35) �uuþ uv þ ua is substituted for the velocity u in the source term. Convection of the acoustic
disturbances by the mean flow is described by the terms containing mean and acoustic perturbation ve-

locities. Due to the linearity of the Poisson in Eq. (30) U can be split into three parts U1 þ U2 þ UP, where

the first part is determined by the acoustic/mean velocity terms, the second is determined by the terms

containing the enthalpy and the entropy, and the third part is described by the remaining terms. The

analysis leads to

r2U1 ¼ �r 
 ð�uu 
 rÞua
h

þ ðua 
 rÞ�uu
i
; ð36Þ

r2U2 ¼ �r 

h
�r�hh � Trsð Þ0

i
; ð37Þ
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r2UP ¼ �r 
 u 
 rð Þuv
"

þ uv 
 rð Þuþ uv 
 rð Þuvð Þ0 � r 
 s
q


 �0
#
: ð38Þ

To obtain Eqs. (36)–(38) all non-linear terms containing the acoustic velocity ua are dropped. Furthermore,

the time-averaged version of Eq. (21) and (23) has been used, i.e.,

�uu 
 r
� �

�uu ¼ �r�hh þ Trs� u0 
 rð Þu0 þ r 
 s
q


 �
ð39Þ

to eliminate the term ð�uu 
 rÞ�uu in the source. Throughout the remaining part of this work primed terms in

parentheses denote ð
 
 
Þ0 ¼ ð
 
 
Þ � ð
 
 
Þ. Using the relation

ð�uu 
 rÞua þ ðua 
 rÞ�uu ¼ r �uu 
 ua
� �

þ �xx � ua; ð40Þ

which follows from an identity plus exploiting the irrotationality of the acoustic perturbation velocity, i.e.,

xa ¼ r� ua ¼ 0, the Poisson equation (36) can be explicitly evaluated

rU1 ¼ �r �uu 
 ua
� �

þrq �xx; ð41Þ

where rq �xx contains all remaining terms and follows from

r2q �xx ¼ �r 
 �xx
�

� ua
�
: ð42Þ

Since Trs ¼ rQ, where Q represents the specific heat, this term and its time average is irrotational such

that the complete Poisson equation (37) can be explicitly solved

rU2 ¼ r�hh þ �TTrs0 þ T 0r�ss: ð43Þ

The entropy fluctuations are considered in the source only to first-order, hence, the entropy terms of Eq.

(37) appear as ðTrsÞ0 � �TTrs0 þ T 0r�ss. Next, the explicitly given terms of Eq. (41) and the mean enthalpy of

Eq. (43) are shifted to the left-hand side of Eq. (32) and the perturbation pressure p0 ¼ p � �pp is substituted

for the perturbation enthalpy h0 ¼ h � �hh using the first-order formulation of the second law of thermo-

dynamics, i.e.,

h0 ¼ p0

�qq
þ �TT s0; ð44Þ

to obtain a governing equation for the acoustic perturbation velocity

oua

ot
þr �uu 
 ua

� �
þr p0

�qq


 �
¼ rUP þrq �xx þ T 0r�ss � s0r �TT :

Let us turn now to Eq. (31) with the acoustic source equation (30). The source-term filtering leaves the source

unchanged, i.e., qa ¼ q. Using the decomposition given in Eq. (34), where us is solenoidal, it can be evidenced

that r 
 u can be substituted for r 
 ui on the left-hand side of Eq. (31). Hence, the source-filtered equation

(31) remains unchanged compared with the original Eq. (20) with source equation (22). Since this equation is

a governing equation for the enthalpy h, this result means that the acoustic source filtering does not yield a

splitting of the enthalpy and as such the enthalpy is completely related to the acoustic eigenmode.

The governing equation for the acoustic velocity perturbations was rewritten using the perturbation
pressure p0 as variable. Accordingly, Eq. (20) with source equation (22) is rewritten as governing equation
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for p0. Since the entropy was assumed to be a known quantity, it is valid to use the continuity equation with

the density q as variable instead of Eqs. (20) and (22). Neglecting the non-linear acoustic terms the con-

tinuity equation can be rewritten in terms of the perturbation density q0 ¼ q � �qq using the decomposition

(35)

oq0

ot
þr 
 �qqua

�
þ q0�uu

�
¼ �r 
 quvð Þ: ð45Þ

The perturbation density in Eq. (45) is replaced by the perturbation pressure via the fist-order form of Eq.

(24)

p0 � �cc2q0 ¼ c�pp
cp

s0: ð46Þ

Then, the complete system of acoustic perturbation equations (APEs) for the perturbation variables
ðp0; uaÞT reads

op0

ot
þ �cc2r 
 �qqua



þ �uu

p0

�cc2

�
¼ �cc2qc; ð47Þ

oua

ot
þr �uu 
 ua

� �
þr p0

�qq


 �
¼ qm ð48Þ

with sources

qc ¼ �rq 
 uv|fflfflfflfflffl{zfflfflfflfflffl}
I

þ �qq
cp

�DDs0

Dt|fflffl{zfflffl}
II

; ð49Þ

qm ¼ rUP|ffl{zffl}
III

þ rq �xx|ffl{zffl}
IV

þ T 0r�ss � s0r �TT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
V

; ð50Þ

where �DD=Dt ¼ o=ot þ �uu 
 r denotes the substantial time derivative. The system (47) and (48) plus sources

(49) and (50) is the basic result of this section and forms the basis for noise prediction.

The system describes wave propagation in a non-uniform mean flow field �uu. In the derivation the non-

linear terms containing acoustic perturbations have been dropped, hence non-linear acoustic propagation
and sound generation effects due to non-linear mode interaction are not considered by the system. The

right-hand side terms qc and qm are to be understood as the acoustic sources. Computing the propagation of

acoustic waves including convection effects in a time-averaged steady flow field allows to restrict the ex-

pensive unsteady flow simulation just to the immediate vicinity of the acoustic source region under con-

sideration, while the mean flow field can be computed using efficient RANS or Euler methods.

Since some variants of the acoustic perturbation equations will be derived in Sections 3.3 and 3.5, this

fundamental set of Eqs. (47) and (48) is termed APE-1.

3.2. Discussion of the APE-1 system

The sources of the APE system (49) and (50) labeled with Roman numbers have to be determined from

an initial unsteady flow simulation, e.g., based on a large eddy simulation. The source terms I and III are a
function of the solenoidal perturbation velocity uv, while the terms II and V involve entropy fluctuations.

Since the solenoidal velocity perturbations can be related to turbulent fluctuations, the terms I, II, III, and
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V can be deemed sound sources being generated from turbulent fluctuations and entropy inhomogeneities.

The remaining source term IV is a function of the mean flow vorticity �xx and the acoustic perturbation

velocity ua, which follows from the solution of the Poisson problem (42). This term describes sound gen-

eration due to acoustic/mean–vorticity interaction. Since for external flow problems the wave propagation

occurs mainly in areas with small mean flow vorticity, i.e., outside boundary layers where the flow field is

sufficiently accurately described by a velocity potential, this term might be negligible. The importance of

this term when wave propagation in a mean flow with evident vorticity is computed will be addressed in

Section 4.2.
The source term II of the continuity equation (47) describes a monopolar heat source. Since it involves

the substantial time derivative, entropy disturbances convecting with the mean flow do not generate sound.

If combustion noise is considered this term as well as term V that also involves entropy and temperature

fluctuations are important, however, they are assumed to be negligible for vortex sound.

The terms I and III are the major source terms for turbulent induced or vortex sound. Term III is

determined by the solution of the Poisson problem (38). For small Mach numbers, i.e., in the limit M ! 0,

the unsteady flow field is completely defined by the solenoidal perturbation velocity uv, if only non-porous

wall boundaries are considered. This property is used, e.g., in the vorticity-streamfunction approach for the
simulation of incompressible flows, where the velocity field is described by a streamfunction. The right-

hand side of Eq. (38) can be expanded by the time derivative of the solenoidal perturbation velocity since

r 
 ouv=ot vanishes. Thus, the Poisson equation can be rewritten as

r2UP ¼ �r 
 ouv

ot

"
þ u 
 rð Þuv þ uv 
 rð Þuþ uv 
 rð Þuvð Þ0 � r 
 s

q


 �0
#
:

As can be seen from the terms in brackets on the right-hand side for small Mach numbers, i.e., M � 1, the

quantity UP is equal to P 0=q1, where P 0 ¼ P � P is the incompressible perturbation pressure. Furthermore,

q ! q1 and rq ! 0 holds such that the source term I drops in this limit. That is, in the low Mach number

limit and when entropy effects are discarded and only vortex sound is considered the major source term is

III. If an incompressible large eddy simulation has been carried out this term can be immediately evaluated

using the incompressible perturbation pressure P 0, i.e.,

rUP ’ rP 0

q1
: ð51Þ

3.3. APE variant 2

In this section the application of the acoustic perturbation equations (APEs) in conjunction with
acoustic sources from an incompressible unsteady flow simulation is discussed. The system (47) and (48)

with sources (49) and (50) is reformulated such that the time derivative of UP from term III appears as a

source term. In order to achieve this, the perturbation pressure must be decomposed according to

p0 ¼ �qqUP þ pa: ð52Þ

This decomposition means that the hydrodynamic perturbation pressure P 0 � �qqUP is excluded from the

pressure fluctuations p0. Hence, the remaining perturbation pressure pa can be understood as an acoustic

perturbation pressure with pseudosound excluded. Note that the decomposition, which formally follows
from the source-term filtering, relates the complete perturbation pressure to the acoustic mode. Using this

decomposition (52) and Eqs. (45) and (46) instead of Eq. (47) a modified acoustic perturbation system

follows:
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oq0

ot
þr 
 q0�uu

�
þ �qqua

�
¼ �r�qq 
 uv; ð53Þ

oua

ot
þr �uu 
 ua

� �
þr pa

�qq


 �
¼ rq �xx þ T 0r�ss �r �TT s0; ð54Þ

opa

ot
� �cc2

oq0

ot
¼ � �qq

oUP

ot|fflffl{zfflffl}
IIIb

þ c�pp
cp

os0

ot|fflffl{zfflffl}
IIb

: ð55Þ

This new formulation of the acoustic perturbation equations will be termed APE-2. The heat source IIb in

the formulation of the APE-2 system is directly related to the perturbed heat release per unit volume Q0

½W=m
3� via

IIb ¼ �qq
cp

os0

ot
¼ ðc � 1Þ

�cc2
oQ0

ot
:

Considering only vortex sound at small Mach numbers and neglecting the linear coupling between the

acoustic and vorticity mode, that is described by the source q �xx, all source terms but IIIb disappear, which in

the small Mach number limit can be replaced by the time derivative of the perturbation pressure of an
incompressible flow simulation, i.e.,

IIIb ¼ �qq
oUP

ot
’ oP 0

ot
: ð56Þ

The perturbation equations (47) and (48) have been derived to prevent the excitation of hydrodynamic

instabilities by excluding all vortical modes. The starting point was a system of equations (20) and (21),

which excluded entropy modes a priori. By substituting the perturbation density in Eq. (53) for the per-

turbation pressure in Eq. (47) and by using an additional Eq. (55) to close the system the excluded entropy

modes are reintroduced. However, we will evidence in Section 3.4 that the entropy mode does not affect the

stability of the system of equations.
In Section 4.4 it will be shown that the source term III or IIIb, respectively, cannot be expressed by the

perturbation pressure P 0 of a compressible flow simulation since the perturbation pressure solution contains

acoustic signals that generate additional acoustic responses that are not based on the correct incompressible

pressure. These artificial acoustic signals have a large magnitude since the acoustic signals in the source are

small but decay only slowly towards the far field. It is shown in Section 4.4 that they cannot be avoided even

if a spatial filtering is applied to separate the important hydrodynamic near-field fluctuations from the

acoustic far field fluctuations in the source.

However, for the low Mach number flow simulation based on an incompressible approach the APE-2
formulation with the source IIIb is most appropriate, since the vortex sound source based on the time

derivative of the incompressible pressure can be determined easily.

To associate the APE system with a compressible flow simulation the unsteady solenoidal perturbation

velocity field uv must be computed via Biot–Savart�s law from the unsteady perturbation vorticity field by

solving a Poisson problem. The solution of equation (38) yields the source terms III or IIIb. Note that this

procedure is not restricted to small Mach number problems.

Although the effort to solve the Poisson problems seems to be comparable to the computational time

necessary to advance the APE system, a simpler way to adapt the APE system to a compressible flow
simulation would be desirable. One formulation termed APE-3 was introduced in [10] that is based on the

perturbed total enthalpy as acoustic variable. Compared with the APE-1 formulation the APE-3 system
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possesses the advantage that no Poisson equation has to be solved to determine the source terms. However,

an advanced formulation will be given in Section 3.5, termed APE-4, that is based on the usual set of

primitive variables, i.e., perturbation pressure and velocities.

3.4. Stability of the acoustic perturbation equations

Although the filtered sources, Eqs. (49) and (50), excite just acoustic modes in the APE-1 system, Eqs.

(47) and (48), it is to be noted that the homogeneous APE-1 system has a certain degree of freedom to

describe also non-acoustic modes. Instabilities of the homogeneous system could be caused by any ei-

genmode. However, it will shown in this section that the APE systems are stable for arbitrary mean flows.

Note that stability is a property of the acoustic perturbation system that is derived by applying the source

filtering procedure and by shifting convection terms to the left-hand side. This essential property is not
achieved by suppressing vorticity in the non-homogeneous system through the remaining filtered sources on

the right-hand side. In particular, the inverse Laplace transform step of the combined inverse Fourier/

Laplace transform equation (A.6), which yields an analytically filtered acoustic source vector in time and

space from the transform equation (27), was defined to run above all poles of the integrand. This definition

ensures causality of the eigenmodes of the Euler equations in time and space whose combined transform is

given by Eq. (A.13). However, the particular choice of the integration path has no influence on the resulting

acoustic source vector, hence stability does not depend on it.

Since the acoustic velocity ua, which is generated in response to the filtered source in the APE system, is
irrotational, it can be expressed through a potential, i.e.,

ua ¼ ru0: ð57Þ

This can be evidenced by taking the curl of Eq. (48), which yields the integrability condition

r� ua ¼ 0 ð58Þ

(uaðt ¼ 0Þ ¼ 0, Section 2 1). However, to study all eigenmodes of the homogeneous system (47) and (48) it is

necessary to perform the analysis for perturbation velocities u0, which are allowed to describe irrotational as

well as rotational perturbations, i.e.,

op0

ot
þ �cc2r 
 �qqu0



þ �uu

p0

�cc2

�
¼ 0; ð59Þ

ou0

ot
þr �uu 
 u0

� �
þr p0

�qq


 �
¼ 0: ð60Þ

The perturbation velocity u0 can be split into an irrotational ru plus a remaining part ur that contains the
complete vorticity

u0 ¼ ru þ ur: ð61Þ

Since ur is not defined to be solenoidal, the decomposition becomes uniquely defined after imposing the

additional condition that the unsteady pressure is expressed only in terms of the unsteady potential u by

p0 ¼ ��qq
�DDu
Dt

; ð62Þ

1 Note that the right-hand side of Eq. (48) is irrotational.
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with the substantial time derivative �DD=Dt ¼ o=ot þ �uu 
 r. Introducing Eqs. (61) and (62) into Eq. (59) yields

a scalar wave equation for u

Lu ¼ r 
 �qqru

 
� �qq

�cc2
�DDu
Dt

�uu

!
� o

ot
�qq
�cc2

�DDu
Dt

 !
¼ �r 
 ð�qqurÞ: ð63Þ

Using the mean flow relationr 
 ð�qq�uuÞ ¼ 0 to simplify the wave (63) and inserting Eqs. (61) and (62) into Eq.
(60), the APE-1 system can be rewritten as the equivalent system

L0u ¼
�DD
Dt

1

�cc2
�DD
Dt

 !"
� 1

�qq
r 
 �qqr
� �#

u ¼ 1

�qq
r 
 �qqur
� �

; ð64Þ

our

ot
þr �uu 
 ur

� �
¼ 0 ð65Þ

for the variables ðu; urÞT, where each equation describes the behavior of one eigenmode of the APE-1

system. The convected wave operator L0 for the variable u of Eq. (64) governs the acoustic mode. Eq. (65)

describes the behavior of the vortical perturbations in the APE-1 system. Taking the curl of this equation

yields the vorticity equation of the APE-1 system

ox0

ot
¼ 0: ð66Þ

Since the APE-1 system is derived to be well suited for the simulation of solely acoustic modes it differs from
the linearized Euler equations as it does not possess the convection property for the vorticity perturbations.

Even for the homogeneous APE-1 system the wave equation of the equivalent system (64) and (65) is coupled

with the vorticity equation in a non-uniform mean flow field with density gradients. Nevertheless, it is ev-

ident that the vorticity equation (66) is stable. It will be discussed below that the wave operator L0 is stable

for arbitrary mean flow fields and thus this result also holds for the equivalent APE-1 system.

Note that the homogeneous linearized Euler equations could also be recast into an equivalent system,

where each equation is related to one eigenmode of the system. If the entropy eigenmode is suppressed by

demanding the perturbation pressure and density to describe homentropic fields, the coupled acoustic/
vortical system of equations corresponds to that proposed by Goldstein [13] and recently used by Golubev

and Atassi [14] and by Cooper and Peake [3] to predict the propagation of acoustic disturbances in swirling

flows. The inhomogeneous wave operator that governs the acoustic mode agrees with Eq. (64), but the

equation for ur

our

ot
þ �uu 
 r
� �

ur þ ur 
 rð Þ�uu ¼ ��xx �ru ð67Þ

also describes growing instability waves, i.e., the equivalent linearized Euler equation are unstable for

certain non-uniform mean flows.

The wave operator L0 on the left-hand side of Eq. (64) is that of Pierce�s approximate wave equation

[31], which was also derived by Goldstein in [13] and recently used in [3,14]. The wave operator is equivalent

to the linearized wave operator of M€oohring�s acoustic analogy [19,27,28], which reads

L0B ¼ D
Dt

1

c2
DB
Dt


 �
� 1

q
r 
 qrBð Þ ¼ � qtot

q
; ð68Þ

where B is the total enthalpy. As discussed by Howe [18] for homentropic high Reynolds number flows his

acoustic analogy [20] agrees with Eq. (68).
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A great number of various acoustic analogies have been proposed in the past in order to extend

Lighthill�s acoustic analogy [24] to take into account refraction and convection effects in the wave operator

and to identify the real acoustic sources. As discussed by M€oohring [27,28] and Bergliaffa et al. [1], the wave

operatorL0 has some unique features. Bergliaffa et al. [1] derived it from an action principle. As outlined by

M€oohring [27,28] the wave operator L0 can be shown to be formally self-adjoint. From the self-adjointness a

reciprocity relation for the Green�s function associated with L0 can be derived. Furthermore, from the self-

adjointness one can conclude the existence of a variational principle from which the wave equation (63) can

be derived. From the variational principle a conservation law for the acoustic energy can be deduced due to
Noether�s theorem.

M€oohring [27,28] concludes from the energy theorem that for initial value problems with vanishing right-

hand side qtot and for a vanishing solution at large distances from the source region the total energy in the

sound field remains constant. Since the total energy is a sum of positive contributions, none of these can

grow exponentially in time, i.e., instabilities cannot occur.

Since the wave operator L0 can be proven to be stable, it follows that also the APE-1 system is stable.

This is a remarkable result since it is neither restricted to a particular class of mean flows, e.g., shear flows,

nor limited to constant mean flow densities.
The homogeneous APE-2 system (53) and (55) also allows the occurrence of entropy disturbances. To

check whether the system of equations remains stable in this case the governing equations can be split into

the equivalent system (64) and (65) plus a governing equation for the entropy mode. To achieve this set of

equations the perturbation density q0 is split into an isentropic qa plus a remaining part qr, i.e.,

q0 ¼ qa þ qr: ð69Þ

The isentropic part is related to the perturbation pressure via pa � �cc2qa ¼ 0. Inserting the decomposition

into the homogeneous version of Eqs. (53)–(55), i.e., the right-hand side sources are dropped, yields the
equivalent system

�DD
Dt

1

�cc2
�DD
Dt

 !"
� 1

�qq
r 
 �qqr
� �#

u ¼ 1

�qq
r 
 �qqur
�

þ qr�uu
�
; ð70Þ

our

ot
þr �uu 
 ur

� �
¼ 0; ð71Þ

oqr

ot
¼ 0 ð72Þ

for the variables ðu; ur; qrÞT. The wave equation (70) is coupled with the vorticity and entropy equations

(71) and (72) via the right-hand side. Note that similar to the vorticity equation of the system, the entropy
equation does not describe convection. Since the entropy equation (72) is stable, it can be concluded that

the whole system remains stable, i.e., stability is also proven for the APE-2 system.

Note that for non-uniform mean flows in general the governing equation for the vorticity mode equation

(67) and the wave equation (64) of the equivalent form of the linearized Euler equations are coupled. Hence,

an alternative homogeneous scalar wave equation that is designed to describe wave propagation in a non-

uniform mean flow without additional sources must also involve the description of vortex dynamics. The

homogeneous Lilley equation [25] is the homogeneous scalar wave equation for a sheared mean flow that

also possesses unstable solutions due to the encoded vortex dynamics. Dowling et al. [7] showed that a
Green�s function for the solution of the inhomogeneous wave equation related to a certain shear flow profile

has to be weakly causal to suppress the occurrence of instabilities in the acoustic solution. The use of a
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weakly causal Green�s function can be deemed a way to suppress unstable vortex dynamics encoded in the

wave equation. In [7] the choice of a weakly causal Green�s function is stated to be physical since in a real

flow the acoustic field does not depend solely on the unsteady near-field flow but rather is coupled such that

acoustic waves are generated from turbulence which is partially caused by previously acoustically excited

instabilities. Therefore, a theory that attributes the source of sound to the turbulence must allow for the

sound�s prior existence. Similarly the APE system can be understood as a system where the unstable

governing equation for the vorticity mode equation (67) of the equivalent form of the LEE is modified to

suppress the occurrence of instabilities while the governing acoustic equation (64) is retained and as such
maintains a bounded solution. The weakly causal element comes into picture for the APE formulations via

the acoustic source that has to be rigorously determined from a compressible initial flow simulation that

also contains compressible, i.e., acoustic fluctuations in the source region.

3.5. APE variant 4

The last variant of acoustic perturbation equations is termed APE-4. It is derived by rewriting the

governing flow equations such that the left-hand side is given by the APE-1 system derived in the Section

3.1 while the right-hand source side is defined by the remaining terms. The purpose is to find sources qc and

qm of the APE-1 system (47) and (48) that can be easily computed from a compressible flow simulation

without solving a Poisson equation. Although such sources will excite also vorticity disturbances in the

APE-1 system, stability is not affected as discussed in Section 3.4. As shown below the vortex sound source
is based on the Lamb vector L ¼ x � u, i.e., the vorticity based source term of the acoustic analogies of

Powell [33], Howe [20] and M€oohring [27,28]. The Lamb vector will vanish close to solid boundaries due to

the no-slip condition, where the flow simulation generally requires the highest resolution. Hence, the

acoustic grid can be coarser than the fluid mechanical grid to properly resolve the acoustic sources. Fur-

thermore, since the APE systems do not describe convection of vortical or entropy disturbances, no CFL

restrictions related to non-acoustic modes limit the time step.

In the following the continuity and Navier–Stokes equations are written in primitive non-linear dis-

turbance formulation. To obtain a system with the perturbation pressure as variable the second law of
thermodynamics in the first-order formulation is used. The non-linear terms containing entropy fluctua-

tions are dropped for convenience. These neglected terms just occur as additional source terms on the right-

hand side of the final formulation. The governing equations can be written as

oq0

ot
þr 
 �qqu0

�
þ q0�uuþ q0u0 � q0u0

�
¼ 0; ð73Þ

ou0

ot
þ �uu 
 r
� �

u0 þ u0 
 r
� 	

�uuþr p0

�qq


 �
¼ f nonlinear þ f ð74Þ

with the momentum sources

f nonlinear ¼ � u0 
 r
� 	

u0



�r 
 s
q

�0

and f ¼ T 0r�ss � s0r �TT ;

where the perturbation density is connected to the perturbation pressure via Eq. (46). Primed quantities

denote perturbation variables, while time-averaged values are denoted by a bar. To derive the particular

form of Eq. (74) the enthalpy and entropy gradients are substituted for the pressure gradient in the full non-

linear momentum equation using the second law of thermodynamics equation (26). The equations for the

perturbation quantities follow by subtracting the time-averaged momentum equation. Since differentiation
and time averaging can be exchanged, only the gradient of the perturbation enthalpy rh0 ¼ rh �rh
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remains in the momentum equation. Furthermore, subtraction of the time-averaged Euler equations yields

for the entropy gradients Trs � Trs � �TTrs0 þ T 0r�ss. Finally, the first-order formulation of the second

law of thermodynamics equation (44) is substituted for the perturbation enthalpy h0. Now, using the

identity

�uu 
 r
� �

u0 þ u0 
 r
� 	

�uu ¼ r �uu 
 u0
� �

þ x0 � �uuþ �xx � u0

the structure of the left-hand side corresponds to the APE-1 system

op0

ot
þ �cc2r 
 �qqu0



þ �uu

p0

�cc2

�
¼ �cc2qc; ð75Þ

ou0

ot
þr �uu 
 u0

� �
þr p0

�qq


 �
¼ qm; ð76Þ

while the right-hand side sources read

qc ¼ �r 
 q0u0
� 	0 þ �qq

cp

�DDs0

Dt
; ð77Þ

qm ¼ � xð � uÞ0 þ T 0r�ss� s0r �TT � rðu0Þ2

2

 !0

þ r 
 s
q


 �0

: ð78Þ

Eqs. (75) and (76) with sources (77) and (78) constitute the APE-4 system. In [29] an acoustic analogy is

defined to be any �noise theory in which the equations of motion for a compressible fluid are rearranged in a

way that separates linear propagation effects.� Since the linear APE system plus the above sources follow
from the governing flow equations, where the major linear source terms are expressions in vorticity and

entropy in the sense of the above definition, this system constitutes an acoustic analogy in which sound is

generated by vorticity and entropy inhomogeneities.

As usual whenever acoustic analogies are applied, the viscous terms in the source are assumed to be of

negligible importance. Furthermore, as evidenced in Section 4.4 the non-linear and entropy terms are of

minor importance considering vortex sound problems. Then, the major vortex source term is the Lamb

vector, i.e., qm ¼ �L0 ¼ �ðx � uÞ0.

4. Computational results

4.1. Numerical method

The acoustic perturbation equations (APEs) and the linearized Euler equations (LEEs) can be written in

non-dimensional form including a source term S in generalized curvilinear coordinates ðn1; n2Þ

oU

ot
þ ÂAi

oU

oni
þH 
U ¼ S with ÂAi ¼ Aj

oni

oxj
; ð79Þ

where U is the vector of the primitive perturbation variables. The Jacobian matrix Aj and the matrix H ,
that contains all the mean flow gradients, follow from the particular form of the linearized equations. The

equations are non-dimensionalized by an appropriate reference length, the sound speed c1, and the density
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q1 of the freestream. The pressure and timescale are non-dimensionalized with l=c1 and q1c21. Einstein�s
summation convention is to be applied to the products with equal indices.

For the spatial discretization the fourth-order dispersion relation preserving (DRP) scheme of Tam and

Webb [40] is applied. This scheme is designed such that for a wide range of wave numbers the dispersion

relations of the LEE are preserved.

The temporal integration is performed with the fourth-order alternating two-step low-dissipation and

low-dispersion Runge–Kutta scheme (LDDRK 5-6) proposed by Hu [21]. Thus, the numerical method is

fourth-order accurate in space and time. To suppress spurious high frequency waves artificial selective
damping (ASD) according to Tam and Dong [38] is used. A constant background value of the mesh

Reynolds number with a typical value of 1=ReD ¼ 0:05 with a slight increase close to boundaries is used.

Besides artificial selective damping also explicit commutative filters according to Vasilyev et al. [41] are

used. A simple sponge layer boundary conditions is applied at far-field boundaries [11].

The formulation of the solid wall boundary conditions is based on the ghost-point concept proposed by

Tam and Dong [39]. In this ansatz a biased finite difference stencil, which includes the ghost-point below the

wall, is used. The value of the pressure of the ghost-point is determined such that the wall normal pressure

derivative satisfies the boundary condition, e.g.,

op0

on
¼ 0: ð80Þ

For flows over slightly curved surfaces it follows from the linearized Euler equations that the kinematic

boundary condition

u0 
 n ¼ 0 ð81Þ

is automatically satisfied if the normal pressure derivative vanishes. For the APE-1 system the pressure

boundary condition is also defined by Eq. (80). For the APE-2 system the decomposition in Eq. (52) means

to split the perturbation pressure further into one part, which is interpreted as pseudosound, and the re-
maining contribution pa. Hence, for the variable pa of the APE-2 system the boundary condition becomes

opa

on
¼ � o�qqUP

on
:

In the APE-1 and the APE-2 formulation the pressure conditions at the boundary are satisfied in con-

junction with the ghost-point concept.

Note that the velocity variable ua of the APE-1 and APE-2 system excludes the solenoidal perturbation
velocity uv and as such the resulting velocities do not obey the kinematic boundary condition, i.e.,

ua 
 n ¼ �uv 
 n 6¼ 0:

In other words, the boundary condition based on the ghost-point concept yields for these cases a general

non-vanishing velocity normal to the surface. However, for the APE-4 formulation, that uses the pertur-

bation velocity u0 as variable, the kinematic boundary condition (81) holds, since vortical perturbations are

not excluded from the perturbation velocities. Furthermore, the perturbation pressure is not split for the

APE-4 formulation. Hence, the normal derivative at the wall can be prescribed for weakly curved surfaces

by Eq. (80).

4.2. Wave propagation in a sheared mean flow

Since the homogeneous acoustic perturbation equations describe properly the wave propagation for
irrotational mean flows, an error occurs applying the homogeneous APE systems in mean flows with
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vorticity. For example in the APE-1 system the acoustic source, which arises from the propagation of

acoustic perturbations in a mean flow with vorticity, i.e., term IV in Eq. (48), is dropped. However, it is

clear that the error made in neglecting the acoustic source term IV is much smaller than neglecting any

acoustic convection and refraction at all, e.g., by applying Lighthill�s acoustic analogy with an artificially

truncated source region.

To quantify the error made by neglecting the secondary acoustic sources the sound field generated by an

analytically prescribed monopole source in a mean flow with vorticity is computed with the APE-2 systems

and is juxtaposed to the solution obtained with the linearized Euler equations and the same source as
governing acoustic equations. The test problem is a sheared mean flow whose velocity distribution is il-

lustrated in Fig. 2. Since the thickness of the shear layer remains constant, no instability waves are excited

in the LEE. The mean velocity profile is prescribed analytically by

uðyÞ ¼ Du tanh 2y=dxð Þ; ð82Þ

where the peak velocity is set to Du ¼ 0:5c1. Note that the wave operator encoded in all APE formulations

is valid for arbitrary mean flows, i.e., is not restricted to low Mach number flows. A low Mach number

limitation appears only via the simplified source IIIb (Eq. (56)) in the APE-2 system. However, in this test

problem the APE-2 system is excited by an analytically prescribed monopole source, that appears on the
right-hand side of the continuity equation.

The shear-layer thickness is fixed by the parameter dx. Its value is either dx ¼ 50 or dx ¼ 10, since a

smaller thickness causes higher values of the mean flow vorticity and as such larger errors in the wave

propagation will occur.

The non-dimensional mean density is defined to be constant, i.e., q ¼ 1. A computational domain with

201� 201 points and equidistant grid spacing Dx ¼ Dy ¼ 1 ranging from )100 to 100 in both directions is

used. The reference solution is based on the linearized Euler equations:

oq0

ot
þr 
 q0�uu

�
þ �qqu0

�
¼ qc; ð83Þ

ou0

ot
þ �uu 
 r
� �

u0 þ u0 
 r
� 	

�uuþ q0

�qq
�uu 
 r
� �

�uuþrp0

�qq
¼ qm; ð84Þ

op0

ot
� �cc2

oq0

ot
¼ qe: ð85Þ

In this particular form the energy equation follows from the first-order Eq. (46). The APE-2 and the LEE

system are excited by an analytically prescribed monopole source of the continuity equation

Fig. 2. Sketch of the sheared mean flow with a zero convection velocity at y ¼ 0. The peak velocity is Du ¼ 0:5c1.

R. Ewert, W. Schr€ooder / Journal of Computational Physics 188 (2003) 365–398 385



qc ¼ exp

�
� lnð2Þ x

2 þ y2

r2

�

 cosðxtÞ; ð86Þ

with r2 ¼ 9 and an angular frequency x ¼ 0:5. The source is located in the origin of the computational

domain. No other sources are considered neither in the LEE nor in the APE-2 formulation. Fig. 3 shows a

snapshot of the perturbation pressure from the solution of the linearized Euler equation and the APE-2

system, respectively, for a layer thickness dx ¼ 50. The agreement is perfect. This result is confirmed by

comparing the pressure distributions on the line y ¼ 70. Fig. 4 shows distributions of the acoustic pressure

and its RMS value. The curves of the LEE and the APE-2 solutions match very well. The solution of the

pressure distribution for a shear layer parameter dx ¼ 10 is evidenced in Fig. 5. Even an approx. five times

larger mean vorticity causes only small differences between the predicted pressure levels. Thus, we conclude
that the homogeneous APE system is appropriate to describe wave propagation in arbitrary mean flows

with sufficiently small levels of mean vorticity.

Fig. 3. Snapshot of the pressure contours resulting from a monopole in sheared mean flow, dx ¼ 50, time level T ¼ 180. Solutions of

the linearized Euler equations (left) and the acoustic perturbation equations (APE-2) (right).

Fig. 4. Comparison of the acoustic pressure distribution along line y ¼ 70 for the linearized Euler equations and the APE-2 system.

Shear layer thickness dx ¼ 50. Pressure distribution at T ¼ 180 (left) and distribution of RMS pressure (right).
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4.3. Sound generation of a spinning vortex pair

In order to numerically study the capabilities of the various APE formulations to predict acoustic fields

based on prescribed sources the sound generation due to a spinning vortex pair is considered next. The

spinning vortex pair has been computed, e.g., in the work of Lee et al. [22], Ekaterinaris [8], and Slimon et

al. [37], to evaluate the capability of the acoustic/viscous splitting technique proposed by Hardin and Pope

[16] and some derivatives of it to predict its quadrupolar sound field. Fig. 6 shows a sketch of the flow
configuration. The flow field induced by a spinning vortex pair is assumed inviscid and incompressible. The

two-point vortices are separated by a distance of 2r0 and have a circulation C. The rotation period is

T ¼ 8p2r20=C, the angular velocity is given by x ¼ C=4pr20, and the circumferential Mach number is

Mr ¼ C=4pr0c1. M€uuller and Obermeier give in [30] an analytical solution of the induced acoustic field,

which is based on a matched asymptotic expansion (MAE) of the flow problem. The inner solution

is inferred from the incompressible and inviscid flow problem. The flow field of a pair of vortices is

determined by the complex potential function Uðz; tÞ

Fig. 5. Comparison of the acoustic pressure distribution along line y ¼ 70 for the linearized Euler equations and the APE-2 system.

Shear layer thickness dx ¼ 10. Pressure distribution at T ¼ 180 (left) and distribution of RMS pressure (right).

Fig. 6. Sketch of the spinning vortex pair. The distance between both vortices is 2r0.
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Uðz; tÞ ¼ C
2pi

ln z2 1



� b2

z2

�
� C

pi
ln z � C

2pi
b
z


 �2

¼ U0 þ U1; ð87Þ

where z ¼ reih ¼ x0 þ iy0 and b ¼ r0eixt. The potential U in Eq. (87) is split into a steady vortical flow part U0

and the first leading term U1 of the expansion of the unsteady flow part for jz=bj � 1. Due to the exponent 2

the leading unsteady part describes a fluctuating field with angular frequency 2x. The outer acoustic field is

prescribed by the homogenous wave equation. Matching between outer and inner solution yields a solution

for the outer acoustic potential which leads to

epp 0 ¼ q1C4

64p3r40c21
H ð2Þ

2 ðkrÞ; ð88Þ

whose real part represents the pressure fluctuation and H ð2Þ
2 ðkrÞ denotes the Hankel function of second

order and second kind. The wave number is k ¼ 2x=c1. The incompressible velocity and the incom-

pressible perturbation pressure are determined by the complex potential U via

U � iV ¼ oUðz; tÞ
oz

; P 0 ¼ �q1
o

ot
R Uðz; tÞf g

�
þ 1

2
U 2
�

þ V 2
	�
: ð89Þ

The incompressible perturbation pressure is used to compute the source term IIIb (Eq. (56)) of the APE-2

system (53) and (55). In the APE-4 system (75) and (76) the vortex source term based on the Lamb vector

x � u is determined. Since the vorticity of the flow problem in Fig. 6 is confined to d-functions, the point-
like vortices are approximated using a vortex core model based on a Gaussian vorticity distribution with a

standard deviation r � r0 such that the source becomes

qmðr; tÞ ¼ � C2erðtÞ
8p2r2r0

X2
i¼1

ð�1Þi exp
 

� jrþ ð�1Þir0ðtÞj2

2r2

!
; r � r0

with r ¼ ðx; yÞT, r0 ¼ roer, and er ¼ ðcos h; sin hÞT, h ¼ xt. The computational domain has an extension of

�1006 x=r0 6 100 in the x- and y-direction. The interior grid consists of 141� 141 points with a sur-

rounding sponge layer thickness of 11 points. In order to resolve the vortex source properly the orthogonal

grid is clustered close to the origin. Spurious waves are removed using spatial filtering. Fig. 7 evidences

Fig. 7. Comparison of the acoustic pressure contours for a matched asymptotic expansion (MAE) solution (left) and the solution of

the APE-4 system with vortex source term (right). C=ðc1r0Þ ¼ 1:0, Mr ¼ 0:0796.

388 R. Ewert, W. Schr€ooder / Journal of Computational Physics 188 (2003) 365–398



good agreement of the pressure contours of the MAE solution and the solution of the APE-4 system.

Figs. 8 and 9 show a comparison of the pressure distribution along the diagonal x ¼ y of the MAE solution

with the solutions of the APE-2 and APE-4 systems for three different vortex circulations and spinning

frequencies, i.e., C=ðc1r0Þ ¼ 0:6; 1:0; 1:6. At the origin of the computational domain, i.e., midway between

the two point vortices, the incompressible pressure becomes singular and its value is very large close to the

vortex centers. In this region the velocity and pressure distributions have large gradients. While the acoustic

source of the APE-4 system is computed using a vortex core model, the acoustic source of the APE-2

system, i.e., the time derivative of the incompressible pressure (Eq. (89)) is determined only for grid points
with a distance r=r0 P 2:0 from the origin. As discussed in [8] this procedure avoids the generation of

spurious waves.

Overall the acoustic fields of the APE formulations show good agreement with the analytical solution for

all frequencies. Probably due to the truncated incompressible pressure source of the APE-2 system

the pressure distributions show a small shift relative to the MAE reference solution and deviate close to

the origin in Figs. 8 and 9. The solutions based on the APE-4 system with vortex source match very well the

Fig. 8. Comparison of the acoustic pressure distribution along the diagonal line x ¼ y for the matched asymptotic expansion (MAE)

solution and solutions of the APE-2 and APE-4 systems. C=ðc1r0Þ ¼ 0:6, Mr ¼ 0:0477 (left) and C=ðc1r0Þ ¼ 1:0, Mr ¼ 0:0796 (right).

Fig. 9. Comparison of the acoustic pressure distribution along the diagonal line x ¼ y for the matched asymptotic expansion (MAE)

solution and solutions of the APE-2 and APE-4 systems. C=ðc1r0Þ ¼ 1:6, Mr ¼ 0:1273.
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reference solution. Close to the outer boundaries small deviations between the computed and the analytical

solution occur in Figs. 8 and 9 due to the sponge layer boundary condition.

4.4. Cylinder in a crossflow

The flow around a circular cylinder at Mach number M ¼ 0:3 and Reynolds number Re ¼ 200 is used as

a further test problem to compare the prediction quality of the APE-2 and APE-4 formulations with the

direct numerical simulation. The compressible flow simulation is carried out using a second-order AUSM

scheme for the spatial discretization. An O-grid with a radial extension of r=d ¼ 80 cylinder diameters and a

resolution of 657� 513 grid points in the circumferential and the radial direction, respectively, is used for

the flow computation. Fig. 10 shows the perturbation pressure field p0 ¼ p � �pp obtained from the CFD

simulation.
The acoustic computations are performed on an O-grid with 257� 161 grid points in the circumferential

and radial directions. The acoustic sources are computed from the CFD solution using second-order

schemes. One time period of the vortex shedding, non-dimensionalized with the cylinder diameter d and the

far-field sonic speed c1, is T ¼ 17. From the time period the non-dimensional wave length is k=d ¼ 17 such

that the coarsest resolution on the CFD grid at the outer boundary in the circumferential direction com-

prises about 22 points per wave length (PPW), which is the resolution limit for a second-order central finite

difference scheme. The lowest acoustic resolution is about 8:6 PPW, which is slightly higher than the

theoretical resolution limit 5:4 PPW of the DRP-scheme. The time period is split into 43 source time levels
and during the acoustic simulation the time-dependent source is computed by linearly interpolating be-

tween two adjacent source data time levels. Due to the periodicity of the flow problem a long time inte-

gration source is obtained by repeatedly reading the single source data period. The acoustic simulation is

performed for several equation sets, i.e., LEE, APE-2, and APE-4, and various source term formulations,

which are given in Table 1 2. The linearized Euler equations (83)–(85) are used with a source

Fig. 10. Perturbation pressure contours p0 of a highly resolved unsteady flow simulation, Re ¼ 200, M ¼ 0:3.

2 Note that the extension of the CFD simulation allows to compute the sources in the whole acoustic domain. According to Fig. 1 the

hybrid approach in general gives the source just in a reduced domain, hence interior boundaries appear where the source must be

truncated in the wake behind the body. It was demonstrated in [9] that spurious sound due to the truncated source can be suppressed

effectively, e.g., by either damping the source term or applying analytical corrections.
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qc ¼ 0; qm ¼ 0; qe ¼ � oP 0

ot
:

This particular source follows by linearizing the acoustic equations proposed by Shen et al. [35].

Fig. 11 shows pressure contours and the pressure distribution on x ¼ 0 for the LEE simulation. The

pressure contour levels evidence the perturbation pressure levels to be overpredicted by a factor 3 compared

to the highly resolved CFD simulation (Fig. 10). The time dependence of the perturbation pressure in a

receiving point r=d ¼ 40 diameters above the cylinder indicates that the LEE simulation becomes unstable
for T > 200. The globally unstable mean flow around the cylinder leads to a divergence of the LEE sim-

ulation due to excited hydrodynamic instabilities, which are not limited neither by non-linear saturation nor

viscous damping.

Since the acoustic perturbation equations are stable for arbitrary mean flow fields, as is shown in Sec-

tions 3.4 and 3.5, the APE-2 system is applied to this test problem to investigate numerically this theoretical

result. Furthermore, it is checked whether the perturbation pressure of the M ¼ 0:3 compressible flow

simulation can be used instead of that of an incompressible solution to express the source IIIb. In this case

errors can occur since the source based on the pressure time derivative will contain an additional com-
pressible, i.e., acoustic, contribution that will generate non-physical signals. Although the magnitude of the

compressible fluctuations in the source is small, they decay very slowly. Hence, this contribution might have

a considerable influence on the predicted acoustic pressure magnitudes. To separate the essential hydro-

dynamic near field from the acoustic far field the time derivative of the compressible perturbation pressure

is spatially filtered using a Gaussian shape filter with origin in the cylinder center and a filter width

determined by the parameter r, i.e.,

Fig. 11. Case A, Table 1: Perturbation pressure contours from a solution of the linearized Euler equations (LEE) with source term Eq.

(85), i.e., pressure time derivative from the CFD solution at time T ¼ 200 (left). The perturbation pressure level exceeds that of the

CFD solution by a factor 3. Unstable perturbation pressure signal of the LEE simulation for a point r=d ¼ 40 above the cylinder for

T > 200 (right).

Table 1

Description of the acoustic equations and sources

Case Acoustic equation Source

A LEE �op=ot from compressible CFD

B APE-2 �op=ot from compressible CFD, spatial filtering equation (90) with r ¼ 5

C APE-2 �op=ot from compressible CFD, spatial filtering equation (90) with r ¼ 20

D APE-2 ��qqoUP=ot, Eq. (38)
E APE-4 �ðx � uÞ0
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o

ot
�qqUP � op

ot

�  
¼ op

ot
exp

 
� r � r0ð Þ2

r2

!
: ð90Þ

Fig. 12 shows pressure contours for two different spatial filters. Due to the APE-2 formulation the hy-

drodynamic perturbation pressure is excluded from the perturbation pressure. Hence, no vortex street is

visible in the simulation. The filter width r ¼ 20 causes the acoustic pressure to be too large compared to

the reference solution in Fig. 10. For a small filter width r ¼ 5 the magnitude of the acoustic pressure and

the lobes tilted in the flow direction agree fairly well with the CFD solution. Nevertheless, this result in-
dicates an inappropriate sensitivity of the simulation to the filter width. It must be emphasized, however,

that the simulation using the APE-2 system confirms the stability analysis in Section 3.4, since no unstable

behavior occurs during the non-dimensional time period DT � 600. Furthermore, Fig. 13 evidences the

Fig. 12. Case B, C, Table 1: Acoustic pressure contours from the APE-2 solution with spatially filtered pressure time derivative from

the CFD solution as source. r ¼ 5 (left), r ¼ 20 (right).

Fig. 13. Comparison of the perturbation vorticity levels x0 ¼ r � u0 of the CFD solution (left) with the perturbation vorticity in the

acoustic simulation of the APE-2 system (Case B, Table 1) (right). The levels of the acoustic simulation evidence that only a small

amount of vorticity is generated due to the wall boundary condition. Hence, the integrability condition r� ua is supported by the

numerical scheme.

392 R. Ewert, W. Schr€ooder / Journal of Computational Physics 188 (2003) 365–398



excitation of vortical disturbances to be strongly suppressed. For the APE-2 system (Case B) a non-zero

modulus of the perturbation vorticity appears only close to the boundary, which is, compared to the
perturbed vorticity levels of the unsteady flow field, strongly reduced such that the integrability condition

r� ua inherent in the APE-formulation is supported by the numerical scheme except for the small error

due to the solid-wall boundary condition.

To obtain an appropriate source IIIb of the APE-2 system from a compressible flow simulation, Eq. (38)

has to be properly solved for UP. This is achieved by computing the solenoidal perturbation velocity

uv ¼ oW
oy

;



� oW

ox

�T

in an intermediate step by solving a Poisson problem for a streamfunction W

r2W ¼ �x0:

The boundary conditions are the Dirichlet condition W ¼ u1y at the far-field boundaries and the Neumann

condition oW=on ¼ 0 at the cylinder surface. The latter constitutes the no-slip condition at the surface,
which holds approximately for the solenoidal velocity decomposition at small Mach numbers. Eq. (38) is

solved by dropping the viscous terms, since the double divergence of the stress tensor vanishes for low

Mach number flows. Then, Eq. (38) corresponds to the (perturbed) pressure Poisson equation used in the

framework of incompressible flow solver algorithms. 3

Fig. 14 shows the solution for source UP (Case D). The pressure magnitudes agree fairly well with those

of the CFD reference solution in Fig. 10.

Fig. 15 shows the perturbation pressure field obtained from the APE-4 system (Eqs. (75) and (76)) using

the vortex source ðx � uÞ0. According to the formulation of the acoustic perturbation equations a vortex
street occurs in the simulation since the hydrodynamic pressure fluctuations are included in the pressure.

The pressure magnitudes and the shape of the radiated waves agree well with those of the CFD simulation

Fig. 14. Case D, Table 1: Perturbation pressure contours of the APE-2 formulation using the vortex source from the unsteady flow

simulation, Re ¼ 200, M ¼ 0:3.

3 Of course, it would be most appropriate to determine the source term IIIb via a solution of the incompressible flow using Eq. (56).

However, based on a compressible flow simulation the above-mentioned strategy is to be followed.

R. Ewert, W. Schr€ooder / Journal of Computational Physics 188 (2003) 365–398 393



in Fig. 10. Due to the mean flow the two main lobes in the upper and lower half plane are tilted in the
upstream direction.

The decay of RMS pressure distributions of the APE-2 and APE-4 simulation is depicted in Fig. 16. On

the left-hand side snapshots of the perturbation pressure distributions along a vertical line x ¼ 0 are shown

for the highly resolved CFD simulation and for the simulations based on the APE-2 and APE-4 formu-

lations. The APE predictions differ on a 8 times coarser grid less than 1 dB relatively to the reference

solution. The APE-4 solution is based (i) on a source term including besides the viscous term all linear and

non-linear contributions and (ii) on a source term using the Lamb vector ðx � uÞ0. The solutions evidence

the latter to be the most important vortex sound source, since the entropy and non-linear terms show nearly
no influence on the result. On the right-hand side the decay of the RMS pressure is plotted along the

vertical line x ¼ 0. In the near-field close to the vicinity of the cylinder the pressure waves show a decay

Fig. 15. Case E, Table 1: Perturbation pressure contours of the APE-4 formulation using the vortex source from the unsteady flow

simulation, Re ¼ 200, M ¼ 0:3.

Fig. 16. Perturbation pressure distribution along a line x ¼ 0 perpendicular to the mean flow direction for the DNS, APE-4 (i) with

source including entropy and non-linear source terms, (ii) with Lamb vector L0 ¼ ðx � uÞ0 alone, and APE-2 solution case D, Table 1.

Decay of the sound pressure perpendicular to the mean flow direction, APE-4 solution (right).
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/ r�1. The acoustic waves confirm a decay with r�1=2 towards the far field, which is in agreement with the

asymptotic 2D behavior.

5. Conclusions

For a hybrid approach a family of acoustic perturbation equations (APEs) has been derived for the

simulation of acoustic fields in space and time. The acoustic sources are predicted based on an unsteady
flow simulation. Since the acoustic perturbation equations describe mean flow convection effects, the flow

simulation has to comprise only the significant source region. It is shown analytically that the APE for-

mulations do not possess instabilities for any non-uniform mean flow field with arbitrary density gradients.

Several source term formulations have been derived, which allow an acoustic simulation based on in-

compressible and compressible flow solutions. For the low Mach number flow simulation based on an

incompressible approach the APE-2 formulation is most appropriate. The vortex sound source is the time

derivative of the incompressible pressure oP 0=ot. The APE-4 formulation for compressible flow simulations

is not restricted to low Mach number problems. The vortex source term of the APE-4 system is the per-
turbation Lamb vector ðx � uÞ0.

The error of the homogeneous APE system to predict convection effects in mean flows with vorticity has

been tested against solutions of the linearized Euler equations for the sound field of a monopole in a

sheared mean flow. The mean flow vorticity had only a small impact on the accuracy to predict convection

effects. The sound generated by a spinning vortex pair showed a convincing agreement of the numerical

solutions based on the APE-2 and APE-4 formulations and the analytical results based on a matched

asymptotic expansion. Finally, a laminar flow over a cylinder at M ¼ 0:3 and Re ¼ 200 has been used to

compare the results of a highly resolved unsteady CFD simulation with the findings of the hybrid approach.
While the solution of the linearized Euler equations suffered from excessive artificial vorticity, the gener-

ation of undue vorticity could be successfully prevented using the acoustic perturbation equations. The

APE systems yielded convincing results for the structure of the pressure contours and the decay of the

pressure with increasing distance from the cylinder.
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Appendix A

The two-dimensional linearized Euler equations given in Eqs. (1) and (2) can be expressed in wave

number and frequency space by combined Fourier and Laplace transformation of the governing system of

equations. For any scalar function f ðx; y; tÞ the Fourier transform of the spatial coordinates and the
Laplace transformation of the time coordinate leads to the general form eff ða; b; �xxÞ ¼ Tðf ðx; y; tÞÞ, i.e.,

eff ða; b; �xxÞ ¼ 1

ð2pÞ3
Z 1

0

ZZ 1

�1
f ðx; y; tÞe�iðaxþby� �xxtÞ dxdy dt: ðA:1Þ

The wave numbers a and b are related to the spatial coordinates x and y and �xx is a complex quantity
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�xx ¼ x þ ir; ðA:2Þ

where the real part x is the angular frequency and the imaginary part r is a constant. The transformation
has the properties that spatial derivatives are expressed in transformed space via

T
onf
oxn


 �
¼ ðiaÞneff ; T

onf
oyn


 �
¼ ðibÞneff : ðA:3Þ

The transform of the first time derivative obeys

T
of
ot


 �
¼ �i �xxeff � 1

2p
f �
initial ðA:4Þ

such that through the Laplace transformation initial values have to be considered. The quantity f �
initial in Eq.

(A.4) denotes the Fourier transform of f ðx; y; tÞ at time level t ¼ 0

f �
initialða; bÞ ¼

1

ð2pÞ2
Z Z 1

�1
f ðx; y; 0Þe�iðaxþbyÞ dxdy: ðA:5Þ

The inverse transformation of Eq. (A.1) is defined by

f ðx; y; tÞ ¼
Z Z 1

�1

Z 1þir

�1þir

eff ða; b; �xxÞeiðaxþby� �xxtÞd �xxdbda; ðA:6Þ

where the constant r in Eq. (A.2) is chosen such that the integration path of the inner integral is parallel to

the real x-axis in the complex �xx-plane above all poles of the integrand. Applying the transformation to each

equation of the linearized Euler equations (1) yields the formal solution

A eUU ¼ eGG : ðA:7Þ

The quantity eUU ¼ ðeqq; euu;evv; eppÞT denotes the transform of the vector of the primitive variables and the

matrix A follows from the flux vectors E and F by applying Eqs. (A.3) and (A.4), i.e., the terms are

multiplied by the imaginary number i, and all initial conditions are shifted to the right-hand side to result

in

A ¼

ð �xx � au1Þ �q1a �q1b 0

0 ð �xx � au1Þ 0 �a=q1
0 0 ð �xx � au1Þ �b=q1
0 �cp1a �cp1b ð �xx � au1Þ

0BB@
1CCA: ðA:8Þ

The transform of the source vector is obtained analogously

eGG ¼ i eSS
 þ 1

2p
U�

initial

�
; ðA:9Þ

where U�
initial represents the initial values of the primitive variables at time level t ¼ 0, which follow from

Eq. (A.5). The eigenvalues kj and eigenvectors xj of the matrix A are

k1 ¼ k2 ¼ ð �xx � au1Þ;
k3 ¼ ð �xx � au1Þ þ c1ða2 þ b2Þ1=2;
k4 ¼ ð �xx � au1Þ � c1ða2 þ b2Þ1=2;

ðA:10Þ
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x1 ¼

1

0

0

0

0BB@
1CCA; x2 ¼

0

b
�a
0

0BB@
1CCA; ðA:11Þ

x3 ¼

c�2
1
�a

q1c1ða2þb2Þ1=2
�b

q1c1ða2þb2Þ1=2

1

0BBB@
1CCCA; x4 ¼

c�2
1
a

q1c1ða2þb2Þ1=2
b

q1c1ða2þb2Þ1=2

1

0BBB@
1CCCA; ðA:12Þ

and c1 ¼ ðcp1=q1Þ
1=2

denotes the sonic speed. The eigenvectors (A.11) and (A.12) are related to the
different eigenmodes. The first two eigenvalues describe two convection modes. The eigenvector x1 is only

nonzero in the first component. Therefore, this eigenvector is related to a convection mode of the density

and can be identified as entropy mode. The second eigenvector describes velocity disturbances and is re-

lated to a vorticity mode. The eigenvectors x3 and x4 are related to acoustic modes. In general the

transform of the vector of the primitive variables can be expressed as a linear combination of the eigen-

vectors, i.e.,

eUU ¼ C1

k1

x1 þ
C2

k2

x2 þ
C3

k3

x3 þ
C4

k4

x4 ¼ XK�1 
 C ; ðA:13Þ

where the columns of the matrix X are the eigenvectors xj. The components Ci of the vector C can be

evaluated by inserting Eq. (A.13) into Eq. (A.7) and using A ¼ XKX�1

C ¼ X�1 eGG : ðA:14Þ

The inverse eigenvector matrix for a parallel mean flow in the x-direction reads

X�1 ¼

1 0 0 � 1
c21

0 b
a2þb2

� a
a2þb2

0

0 � 1
2

q1c1a

ða2þb2Þ1=2
� 1

2

q1c1b

ða2þb2Þ1=2
1
2

0 1
2

q1c1a

ða2þb2Þ1=2
1
2

q1c1b

ða2þb2Þ1=2
1
2

0BBBB@
1CCCCA: ðA:15Þ
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